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Abstract

In this paper, we propose to enhance the pair-wise
aspect and opinion terms extraction (PAOTE) task
by incorporating rich syntactic knowledge. We first
build a syntax fusion encoder for encoding syntac-
tic features, including a label-aware graph convolu-
tional network (LAGCN) for modeling the depen-
dency edges and labels, as well as the POS tags uni-
fiedly, and a local-attention module encoding POS
tags for better term boundary detection. During pair-
ing, we then adopt Biaffine and Triaffine scoring
for high-order aspect-opinion term pairing, in the
meantime re-harnessing the syntax-enriched repre-
sentations in LAGCN for syntactic-aware scoring.
Experimental results on four benchmark datasets
demonstrate that our model outperforms current
state-of-the-art baselines, meanwhile yielding ex-
plainable predictions with syntactic knowledge.

1 Introduction
Fine-grained aspect-based sentiment analysis (ABSA), which
aims to analyze people’s detailed insights towards a prod-
uct or service, has become a hot research topic in natural
language processing (NLP). The extraction of aspect terms
(AT) extraction and opinion terms (OT) as two fundamen-
tal subtasks of ABSA have emerged [Wang et al., 2017;
Xu et al., 2018; Fan et al., 2019; Chen and Qian, 2020]. In
later research, the aspect and opinion terms co-extraction has
received much attention for the exploration of mutual ben-
efits in between [Wang et al., 2017; Dai and Song, 2019].
However, these extraction methods do not consider AT and
OT as pairs. More recently, some efforts are devoted to de-
tecting the pair of the correlated aspect and opinion terms
jointly, namely pair-wise aspect and opinion terms extrac-
tion (PAOTE) task [Zhao et al., 2020; Wu et al., 2020a;
Chen et al., 2020], as illustrated in Figure 1. Existing
works perform end-to-end PAOTE based on joint learning
methods for better task performances [Zhao et al., 2020;
Wu et al., 2020a; Chen et al., 2020]. Unfortunately, there
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Figure 1: Illustration of pair-wise aspect and opinion terms extraction
based on an example sentence (a) with the corresponding part-of-
speech tags (b) and syntactic dependency structures (c).

are still some characteristics of PAOTE fallen out of the con-
sideration of prior works.

Firstly, the linguistic part-of-speech (POS) tag features are
an overlooked potential performance enhancer. Intuitively,
POS tags entail the boundary information between neighbors
of spans, which can essentially promote the recognition of
aspect and opinion terms. Secondly, the syntactic structure
knowledge is highly crucial to PAOTE, i.e., helping to capture
some long-range syntactic relations that are obscure from the
surface form alone. Yet only the syntactic dependency edge
features are utilized in prior works for ABSA (i.e., the tree
structure), without considering the syntactic dependency label
features [Zhang et al., 2019]. We note that the syntactic labels
also provide key clues for supporting the underlying reasoning.
Intuitively, the dependency arcs with different labels carry dis-
tinct evidence in different degrees. As exemplified in Figure 1,
Compared with other arcs within the dependency structure, the
ones with ‘nsubj’ and ‘conj’ can bring the most characteristic
clues for facilitating the inference of the aspect-opinion pairs.

Another observation is that the considerable numbers of
overlapping1 aspect-opinion pairs (around 24.42% in our data)
may largely influence the task performances. Essentially,
those aspect-opinion pairs within one overlapping structure
may share some mutual information. Notwithstanding, the
first-order scoring paradigm has been largely employed in
the current graph-based PAOTE models [Zhao et al., 2020;
Wu et al., 2020a; Chen et al., 2020], considering only one
single potential aspect-opinion pair at a time when making
scoring. This inevitably results in local short-term feature
combination and leaves the underlying common structural

1An aspect or opinion term in one pair is simultaneously involved
in other pair(s), as in Figure 1.
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interactions unused. Hence, how to effectively model the over-
lapping structure during the term pairing remains unexplored.

In this paper, we aim to address all the aforementioned
challenges by presenting a novel joint framework for PAOTE.
Figure 2 shows the overall framework. First, we propose a syn-
tax fusion encoder (namely SynFue) for encoding syntactic
features (cf. Figure 3), where a label-aware graph convolu-
tional network (LAGCN) models dependency edges and labels
as well as POS tags, and the local-attention module encodes
POS tags. By capturing rich syntactic knowledge in this man-
ner, SynFue is able to produce span terms more accurately,
and on the other hand, it encourages sufficient interactions
between syntactic structures and term pair structures. During
pairing, we then perform high-order scoring for each candi-
date aspect-opinion term pair via a Triaffine scorer [Carreras,
2007], which can model the triadic relations of the overlap-
ping term structures with a broader viewpoint. To enhance
the semantic pairing, we further consider a syntactic-aware
scoring, re-harnessing the syntax-enriched representations in
LAGCN. Finally, our system outputs all valid aspect-opinion
term pairs based on the overall potential scores.

To sum up, our contributions are three-fold.
F We for the first time in literature propose to incorporate

rich syntactic and linguistic knowledge for improving the
PAOTE task. We propose a LAGCN to encode the dependency
trees with labels as well as POS tags in a unified manner. Also,
we promote the term boundary recognition by modeling the
POS features via a local attention mechanism.

F We present a high-order joint solution for aspect-opinion
pairing with a Triaffine scorer, fully exploring the underly-
ing mutual interactions within the overlapping pair structures.
The intermediate syntax-enriched representations yielded from
LAGCN are re-exploited for further syntactic-aware scoring.

F Our method attains state-of-the-art performances on four
benchmark datasets for PAOTE. Further analysis reveals that
our method can effectively leverage rich syntactic information,
and capture the correlations between syntactic structures and
aspect-opinion pair structures.

2 Model
As illustrated in Figure 2, our system is built based on the
current best-performing span graph-based model [Zhao et
al., 2020; Eberts and Ulges, 2020]. The model first takes
as inputs the contextualized word representation from the
BERT language model [Devlin et al., 2019]. Next, syntac-
tic dependencies and POS tags are injected into the syn-
tax fusion encoder. We then perform term type classifica-
tion and filtering based on the term representations from
the token representations. In the pairing stage, we mea-
sure the term-term pairs with the potential scores includ-
ing high-order scores and syntactic-aware scores, based on
which the final pairs will be output. Given an input sentence
s={w1, · · · , wT }, our system is expected to produce a set of
aspect-opinion pairs P={p1(a, o), · · · , pk(a, o)} ⊂ A × O.
A={a1, · · · , aN} is all possible aspect terms, where an can
be a single word or a phrase, denoted as an={wi, · · · , wj}.
Likewise, O={o1, · · · , oM} is all the possible opinion terms,
where om={wi, · · · , wj} is a term span.
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Figure 2: Overview of our proposed framework.

2.1 Word Representation from BERT
The BERT language model has been proven superior in build-
ing contextualized representations for various NLP tasks [Ding
et al., 2020; Eberts and Ulges, 2020; Zhao et al., 2020]. Hence
we utilize BERT as the underlying encoder to yield the basic
contextualized word representations:

{v1, · · · ,vT } = BERT({w1, · · · , wT }) , (1)

where vt is the output representation for the word wt.

2.2 Syntax Fusion Encoder
We inject three types of external syntactic sources, i.e., depen-
dency edges and labels, and POS tags, into our syntax fusion
encoder (SynFue). SynFue (with total L layers) consists of
a local attention for POS tags and a label-aware GCN for all
syntactic inputs at each layer (cf. Figure 3).
Local-attention for encoding POS tags POS tags, as the
major word-level linguistic features, provide potential clues
for boundary recognition of term spans [Nie et al., 2020].
Instead of adopting the vanilla hard attention that encodes the
whole sequence-level information, we encode POS tags via a
local attention mechanism [Luong et al., 2015], which is more
capable of capturing the local contexts for phrasal term spans.
Technically, for each word wt in s, we mark its corresponding
POS tag as wpt , and obtain its POS embedding xpt . At the l-th
layer, the local attention operation is performed at a scope of
d window size:

ep,lt =
∑t+d
i=t−dγ

l
t,i x

p
i , (2)

γlt,i =
exp (W1[e

l−1
i ;xpi ])∑t+d

j=t−d exp (W1[e
l−1
j ;xpj ])

, (3)

where [; ] denotes the concatenation operation, W1 is the learn-
able parameters and ep,lt is the output representations.



Label-aware GCN for rich syntactic features Previous
studies employ GCN [Marcheggiani and Titov, 2017] to en-
code purely the dependency structural edges, while they fail to
model the syntactic dependency labels leeched on to the edges,
but also ignore the POS category information. We note that
these syntactic features should be navigated simultaneously
in a unified manner, as they together essentially describe the
complete syntactic attributes in different perspectives. We
here propose a label-aware GCN (LAGCN) to accomplish it.
Given the input sentence s with its corresponding dependency
edges and labels, and POS tag embeddings xpt , we define an
adjacency matrix {bt,j}T×T for dependency edges between
each pair of words ( wt and wj) where bt,j=1 if there is an
edge between them, and bt,j=0 vice versa. There is also a
dependency label matrix {rt,j}T×T , where rt,j denotes the
dependency relation label between wt and wj . We maintain
the vectorial embedding xrt,j for each dependency label.

We denote the hidden representation of wt at the l-th
LAGCN layer as es,lt :

es,lt = ReLU(
∑T
j=1α

l
t,j(W2·el−1j +W3·xrt,j+W4·xpj+b)) ,

(4)
where αlt,j is the syntactic-aware neighbor connecting-strength
distribution calculated by:

rst,j = W5 · [el−1j ;xpj ;x
r
t,j ] , (5)

αlt,j =
bt,j · exp (rst,j)∑T
i=1 bt,i · exp (rst,i)

, (6)

where rst,j entails the syntactic relationship between tokens.
The weight distribution αt,j entails the structural information,
thus comprehensively reflecting the syntactic attributes.

We explicitly concatenate the representations of L-th layer
of local attention POS encoder and LAGCN as the overall
token representations eLt = [es,Lt ; ep,Lt ].

2.3 Term Generation and Filtering
We concatenate BERT representation vt and SynFue represen-
tation eLt as final token representation ht=[vt; eLt ]. We next
construct span representation based on token representations:

hpool = Max-Pooling([hhead, · · · ,htail]) , (7)

s
′

i = [hhead;htail;hS ;hsize;hpool] , (8)

si = FFN(Dropout(s
′

i)) , (9)

where hhead and htail are the boundary representation of the
start and end token of each term. hS is the overall sentence
representation from BERT (i.e., from CLS token). hpool is the
max pooling operation (Max-Pooling), and hsize is the term
width embedding. ‘FFN’ refers to feed-forward layers, and
‘Dropout’ is applied to alleviate overfitting.

Then, we determine the term type via a softmax classifier
ci = Softmax(si). We pre-define three categories of terms:
{CA, CO, Cε}, more specially, aspect term (CA), opinion
term (CO) and invalid term (Cε). Afterward, we estimate
which type each term belongs to, by looking at the highest-
scored class based on ci, i.e., filtering invalid candidates (Cε),
maintaining a set of final terms which supposedly are aspect
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Figure 3: Illustration of the SynFue encoder.

terms and opinion terms, i.e., an and om. Based on the filtering
step, we can effectively prune the pool of span terms and lead
to higher efficiency. We denote the representation of aspect
term and opinion term as san and som, respectively.

2.4 Term Pairing
We measure the relationship between each candidate aspect-
opinion term pair by calculating the potential scores of the
term pairs Qn,m ∈ RN×M . We consider two types of scores:
high-order pairing scores and syntactic-aware scores.

High-order scoring. In previous works, the Biaffine scorer
is usually utilized for relation determination [Dozat and Man-
ning, 2017; Eberts and Ulges, 2020]. However, Biaffine only
models the dyadic relations between each pair, which may
lead to an insufficient exploration of the triadic relations that
occur in the overlapping aspect-opinion pair structures, as we
highlighted earlier. We hence adopt high-order scoring, as in
Figure 2. First, a Biaffine scorer is used for measuring each
pair under the first-order scope:

φBin,m = Sigmoid(
[

san
1

]T
W6 s

o
m) , (10)

where W6 ∈ R(ds+1)×ds is a parameter. ds is the dimension
of the term representations. The Triaffine scorer [Carreras,
2007; Wang et al., 2019] is utilized for second-order scor-
ing of two overlapping pairs simultaneously, over three term
representations (i.e., san, s

o
m, s

∗
k)2

φTrin,m,k = Sigmoid(
[

san
1

]T
(som)TW7

[
s∗k
1

]
) . (11)

2s∗k can be an aspect or opinion term, excluding san and som.



Syntactic-aware scoring. Intuitively, the syntactic repre-
sentations in LAGCN that depict the syntactic relationship
between tokens can also provide rich clues for the detection
of term pairs. Here we consider making use of such syn-
tactic features, performing syntactic-aware scoring, cf. Fig-
ure 2. Technically, we re-harness the token-level represen-
tation Rs=[· · · , rst,j , · · · ] ∈ RT×T (from Eq. 5) by project-
ing Rs into span-level syntactic transition representations
Ss ∈ RN×M . For an aspect-opinion term pair an and om, we
first track its start and end indexes respectively in Rs. We
then obtain the transition representations spn,m, i.e., from an
to om via the span pooling operation:

spn,m = Span-Pooling(rsn(start):n(end),m(start):m(end)) .
(12)

We further apply a cross-attention operation [Ding et al.,
2020] for each pair spn,m, to propagate the dependencies and
impacts from other terms at the same row and column. Con-

cretely, we calculate the row-wise weights
↔
β and column-wise

weights βl on spn,m:

↔
βk = Softmax(

(spn,m)T · spn,k√
M

), β
l
k = Softmax(

(spn,m)T · (spk,m)
√
N

) ,

(13)
where k is the column or row index of the current pair.

φSn,m = Sigmoid(W8 · (
∑
k

↔
β ks

p
n,k +

∑
kβ
l
ks
p
k,m)) . (14)

Finally, we build the overall unary potential scores by taking
into account all the above scoring items.

Qn,m = φBin,m + η1
∑
k 6=n,m

φTrin,m,k + η2 φ
S
n,m , (15)

where η1 and η2 are factors regulating the contributions of
different scores. We then push Qn,m into [0,1] likelihood
value:

pk(an, om)← yn,m = Sigmoid(Qn,m) , (16)

where those elements yn,m larger than a pre-defined threshold
δ will be output as valid pairs, i.e., pk(an, om).

2.5 Training
During training, given an input sentence s with manually
annotated gold pairs P̂ = {p̂k(â, ô)}Kk=1. We define a joint
loss for term detection and pair relation detection:

L =
∑D(LType + λ1LPair) + λ2||θ||22 , (17)

where D is the total sentence number, λ1 is the coupling
co-efficiency regulating two loss items, and λ2 is the `2 reg-
ularization factor. LType denotes the negative log-likelihood
loss for term type detection, and LPair denotes the binary
cross-entropy over pair relation classes:

LType = −
∑G
i=1

ĉi log ci , (18)

LPair = −
∑K
k=1

log p
′

k , (19)

where G is total spans, p
′

k is the factorized probability
of each aspect-opinion pair over input sentence: p

′

k =∏
a∈A,o∈O p(a, o).

#Sent. #Asp. #Opi. #Pair #Ovlp.P

14lap Train 1,124 1,589 1,583 1,835 431 (23.49%)
Test 332 467 478 547 147 (26.87%)

14res Train 1,574 2,551 2,604 2,936 667 (22.72%)
Test 493 851 866 1,008 276 (27.38%)

15res Train 754 1,076 1,192 1,277 346 (27.09%)
Test 325 436 469 493 98 (19.88%)

16res Train 1,079 1,511 1,660 1,769 444 (25.10%)
Test 328 456 485 525 120 (22.86%)

Table 1: Data statistics. ‘#Sent.’, ‘#Asp.’, ‘#Opi.’ and ‘#Pair’ denote
the number of sentences, aspect/opinion terms and aspect-opinion
pairs, respectively. ‘#Ovlp.P’ is the number of overlapping pairs.

Negative sampling. During term type detection, in addition
to the positive samples of the labeled terms, we randomly draw
a fixed number (Nt) of negative samples, i.e., non-term spans,
to accelerate the training.

3 Experiments
3.1 Experimental Setups
Datasets and resources. We conduct experiment on four
benchmark datasets [Wu et al., 2020a], including 14lap, 14res,
15res and 16res. The statistics of four datasets are listed in
Table 1. We employ the Stanford CoreNLP Toolkit3 to obtain
the dependency parses and POS tags for all sentences. We
adopt the officially released pre-trained BERT parameters.4

Implementation. Both the BERT representation vt and the
term span representation ds have 768 dimensionality. The
syntactic label embedding size and POS embedding are set
to 100-d, and span width embedding is set to 25-d. We adopt
the Adam optimizer with an initial learning rate of 4e-5. We
use a batch size of 16 and set unfixed epochs with early-stop
training strategy instead. We mainly adopt F1 score as the
metric. Our model5 takes different parameters on different
data, which are separately fine-tuned.

Baselines. Our baselines are divided into pipeline methods
and joint methods. • 1) One type of pipeline methods uses
CMLA [Peng et al., 2020] to co-extract aspect and opin-
ion terms, and then make pairing with CGCN [Zhang et al.,
2018]. Another pipeline schemes first perform targeted aspect
terms extraction, e.g., with BiLSTM+ATT [Fan et al., 2018],
DECNN [Xu et al., 2018] and RINANTE [Dai and Song,
2019] models, and then conduct target-oriented opinion terms
extraction with the given aspect terms in the second stage,
e.g., by IOG [Fan et al., 2019]. • 2) Joint methods perform
unified extraction of aspect terms and opinion terms, as well
as pair-wise relation between them, including SpanMlt [Zhao
et al., 2020] and GTS [Wu et al., 2020a].

3.2 Results and Analysis
Main performances. The overall results are shown in Table
2. The first observation is that the performances by the joint
methods are constantly higher than the two types of pipeline

3https://stanfordnlp.github.io/CoreNLP/, CoreNLP v4.2.0
4https://github.com/google-research/bert, base cased version.
5Available at https://github.com/ChocoWu/Synfue-PAOTE

https://stanfordnlp.github.io/CoreNLP/
https://github.com/google-research/bert


14lap 14res 15res 16res
• Pipeline Methods

CMLA+CGCN† 53.03 63.17 55.76 62.70
BiLSTM+ATT+IOG† 52.84 65.46 57.73 64.13
DECNN+IOG† 55.35 68.55 58.04 64.55
RINANTE+IOG† 57.10 67.74 59.16 -

• Joint Methods
SpanMlt† 64.41 73.80 59.91 67.72
GTS† 57.69 69.13 65.39 70.39
Ours w/o BERT♠ 64.59 74.05 63.74 72.06
SpanMlt+BERT† 68.66 75.60 64.68 71.78
GTS+BERT† 65.67 75.53 67.53 74.62
Ours♠ 68.88 76.62 68.91 76.59

Table 2: Main results. Baselines with the superscript ‘†’ are copied
from their raw papers; scores with ‘♠’ are presented after a significant
test with p≤0.05.

14lap 14res 15res 16res Avg.
Ours 68.88 76.62 68.91 76.59 72.75
• Encoding

w/o BERT 64.59 74.05 63.74 72.06 68.08
w/o Dep.Label 68.67 76.13 68.52 76.42 72.44
GCN∗ 67.93 75.27 67.18 75.97 71.59
w/o LAGCN 66.33 75.41 64.54 74.31 70.15
w/o Loc.Att. 68.03 75.72 67.97 76.04 71.94
w/o POS tags 67.07 75.43 66.73 75.28 71.13

• Decoding
w/o Neg.Samp. 67.56 73.72 68.28 76.12 71.42
w/o Biaffine (Eq. 10) 54.18 58.46 45.28 61.04 54.74
w/o Triaffine (Eq. 11) 68.20 76.02 67.77 76.14 72.03
w/o Syn.Score (Eq. 14) 67.58 75.87 67.01 75.18 71.41
w/o Cro.Att. (Eq. 13) 68.45 76.35 68.35 75.63 72.19

Table 3: Ablation results. ‘GCN∗’ means replacing LAGCN with
a vanilla GCN model that encodes only the syntactic dependency
edges. ‘w/o Dep.Label’ means removing dependency labels from
LAGCN while keeping dependency edges and POS tags.

methods. This confirms the previously established viewpoint
that the joint scheme of aspect-opinion term extraction can
relieve the error propagation issues in the pipeline. More
importantly, our proposed model achieves the best results
against all the baselines. For example, our model even without
using BERT obtains 64.59%, 74.05%, 63.74% and 72.06% F1
scores on each dataset, respectively. By integrating the BERT
language model, the performances of the joint models can be
further improved. Note that our proposed model outperforms
strong baselines by a large margin.

Ablation. We perform ablation experiments (cf. Table 3)
to understand the effect of each part of the proposed model.
We first remove BERT while using pre-trained Glove embed-
dings for BiLSTM instead, and we receive the most notable
performance drops among all other factors, showing the ef-
fectiveness of BERT for downstream tasks [Zhao et al., 2020;
Wu et al., 2020a; Fei et al., 2020]. Without the dependency
label features, we can find that the performances consistently
decrease. By replacing LAGCN with vanilla GCN encod-
ing only the dependency arcs, the results drop further. When
LAGCN is ablated, i.e., without encoding the syntactic arcs
and labels as well as the POS tags, such drops are magnified
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Figure 4: Results on extracting aspect and opinion terms on two
datasets. Models all take the BERT representation.
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Figure 5: Pairing results by varying η1 and η2 on the 16res dataset.

significantly. If we strip off the local-attention POS encoder,
or remove the POS features away from LAGCN, the perfor-
mances are downgraded to some extent.

For decoding, we can find that the negative sampling
strategy influences the results. Also, three pairing scores
show effects in different extent, i.e., the first-order Biaffine
gives more effects than the second-order Triaffine scorer and
syntactic-aware scoring. One possible reason is that most non-
overlapping pairs prevent Triaffine, which is more capable
of modeling triadic relations among overlapping structures,
from giving its utmost function. Furthermore, we can find that
the syntactic-aware scores are highly crucial to the pairing,
and removing the cross-attention mechanism will reduce the
effectiveness of syntactic-aware scores.

Term extraction. We further examine our model’s capa-
bility on aspect term extraction (ATE) and opinion term ex-
traction (OTE), separately. Figure 4 shows the performances
of two subtasks on the 14res and 15res datasets. It can be
observed that the joint methods consistently outperform the
pipeline method (RINANTE), while our model gives the best
performances compared with all baselines. We also find that
whether we use POS tagging features or not has a significant
impact on term extraction.

Effects of pairing strategies. In addition to the base Bi-
affine scorer for term pairing, we further study how the Tri-
affine scorer and the syntactic-aware scoring influence the
overall pairing performances. We reach this by tuning the
regulating factors η1 and η2. From the patterns in Figure 5,
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we can find that the overall result is the best when η1=0.4
and η2=1.0. For one thing, the comparatively fewer overlap-
ping pairs in the dataset make the contribution by the Triaffine
scorer limited. For another, the syntactic dependency infor-
mation from LAGCN offers prominent hints for determining
the semantic relations between aspect-opinion terms, which
accordingly requires a higher proportion of scoring weights.

Influence of Layer Number. Syntactic fusion encoder
(SynFue) is responsible for fusing syntactic structure features
as well as the POS tags. Intuitively, more layers of SynFue
should give stronger capability of the syntax modeling. We
show the performances by installing different layers of SynFue
in our model, based on each dataset. As illustrated in Figure
6, we see that the model can give the best effect with a two-
layer of SynFue, in most of the datasets. This implies that
too many layers of syntax propagation may partially result in
information redundancy and overfitting.

Syntax correlations. Finally, we qualitatively investigate if
our proposed LAGCN can genuinely model these syntaxes
to improve the task. Technically, for each input sentence we
observe the syntax-connecting weights α (in Eq. 6) and collect
the weights of the correlated dependencies and POS tags of
token words. We render these normalized values in Figure 7. It
is quite clear to see that LAGCN well captures the correlations
between syntactic dependencies and POS tags. For example,
for the dependency arc with the ‘nsubj’ type, LAGCN learns
to assign more connections with those tokens with the POS
tags of ‘JJ’, ‘NN’ and ‘NNS’, which essentially depicts the
boundary attributes of the constituent spans, as well as the
correlated semantic relations between terms. This can explain
the task improvement accordingly.

4 Related Work
Aspect terms extraction and opinion terms extraction, as two
fundamental subtasks of fine-grained aspect-based sentiment
analysis (ABSA) [Pang and Lee, 2007; Liu, 2012; Huang et
al., 2020; Wang et al., 2020], have received extensive research
attentions in recent years [Wang et al., 2017; Xu et al., 2018;
Fan et al., 2019; Chen and Qian, 2020]. Considering the
relevance between two subtasks, Zhao et al. (2020) propose
the pair-wise aspect and opinion terms extraction (PAOTE)
task, detecting the pair of the correlated aspect and opinion
terms jointly. Preliminary works adopt the pipeline methods,
i.e., first extracting the aspect terms and the opinion terms
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Figure 7: Correlations between syntactic dependencies and POS tags
discovered by LAGCN. Only a high-frequency subset of syntactic
labels are presented.

separately, and then making pairings for them [Wang et al.,
2017; Xu et al., 2018; Peng et al., 2020; Wu et al., 2020b].
Recent efforts focus on designing joint extraction models for
PAOTE [Wu et al., 2020a; Chen et al., 2020], reducing error
propagation and bringing better task performances.

Previous studies also reveal that syntactic dependency fea-
tures are crucial for ABSA [Phan and Ogunbona, 2020;
Tang et al., 2020]. These works mostly consider the syn-
tactic dependency edges, while the syntactic labels and POS
tags that also provide potential evidences, can not be exploited
fully in the PAOTE task. We thus in this work propose a novel
label-aware syntactic graph convolutional network for mod-
eling rich syntactic features. Furthermore, we leverage the
syntactic information for better term pairing. We also take ad-
vantage of the high-order graph-based models [Carreras, 2007;
Wang et al., 2019], i.e., using the second-order Triaffine scorer
to fully explore the underlying mutual interactions within the
overlapping pair structures.

5 Conclusions
In this study, we investigated a novel joint model for pair-wise
aspect and opinion terms extraction (PAOTE). Our proposed
syntax fusion encoder incorporated rich syntactic features, in-
cluding dependency edges and labels, as well as the POS tags.
During pairing, we considered both the high-order scoring and
the syntactic-aware scoring for aspect-opinion term pairs. Ex-
perimental results on four benchmark datasets showed that our
proposed syntax-enriched model gave improved performance
compared with current state-of-the-art models, demonstrating
the effectiveness of rich syntactic knowledge for this task.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China (No. 61772378), the National Key Research
and Development Program of China (No. 2017YFC1200500),
the Research Foundation of Ministry of Education of China
(No. 18JZD015), and the Key Project of State Language Com-
mission of China (No.ZDI135-112).



References
[Carreras, 2007] Xavier Carreras. Experiments with a higher-

order projective dependency parser. In EMNLP, pages
957–961, 2007.

[Chen and Qian, 2020] Zhuang Chen and Tieyun Qian. En-
hancing aspect term extraction with soft prototypes. In
EMNLP, pages 2107–2117, 2020.

[Chen et al., 2020] Shaowei Chen, Jie Liu, Yu Wang, Wen-
zheng Zhang, and Ziming Chi. Synchronous double-
channel recurrent network for aspect-opinion pair extrac-
tion. In ACL, pages 6515–6524, 2020.

[Dai and Song, 2019] Hongliang Dai and Yangqiu Song.
Neural aspect and opinion term extraction with mined rules
as weak supervision. In ACL, pages 5268–5277, 2019.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In
NAACL, pages 4171–4186, 2019.

[Ding et al., 2020] Zixiang Ding, Rui Xia, and Jianfei Yu.
ECPE-2D: emotion-cause pair extraction based on joint
two-dimensional representation, interaction and prediction.
In ACL, pages 3161–3170, 2020.

[Dozat and Manning, 2017] Timothy Dozat and Christo-
pher D. Manning. Deep biaffine attention for neural depen-
dency parsing. In ICLR, 2017.

[Eberts and Ulges, 2020] Markus Eberts and Adrian Ulges.
Span-based joint entity and relation extraction with trans-
former pre-training. In ECAI, pages 2006–2013, 2020.

[Fan et al., 2018] Feifan Fan, Yansong Feng, and Dongyan
Zhao. Multi-grained attention network for aspect-level
sentiment classification. In EMNLP, pages 3433–3442,
2018.

[Fan et al., 2019] Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shu-
jian Huang, and Jiajun Chen. Target-oriented opinion words
extraction with target-fused neural sequence labeling. In
NAACL, pages 2509–2518, 2019.

[Fei et al., 2020] Hao Fei, Meishan Zhang, and Donghong
Ji. Cross-lingual semantic role labeling with high-quality
translated training corpus. In ACL, pages 7014–7026, 2020.

[Huang et al., 2020] Jiaxin Huang, Yu Meng, Fang Guo,
Heng Ji, and Jiawei Han. Weakly-supervised aspect-based
sentiment analysis via joint aspect-sentiment topic embed-
ding. In EMNLP, pages 6989–6999, 2020.

[Liu, 2012] Bing Liu. Sentiment analysis and opinion min-
ing. Synthesis Lectures on Human Language Technologies,
5(1):1–167, 2012.

[Luong et al., 2015] Thang Luong, Hieu Pham, and Christo-
pher D. Manning. Effective approaches to attention-based
neural machine translation. In EMNLP, pages 1412–1421,
2015.

[Marcheggiani and Titov, 2017] Diego Marcheggiani and
Ivan Titov. Encoding sentences with graph convolutional
networks for semantic role labeling. In EMNLP, pages
1506–1515, 2017.

[Nie et al., 2020] Yuyang Nie, Yuanhe Tian, Yan Song, Xi-
ang Ao, and Xiang Wan. Improving named entity recogni-
tion with attentive ensemble of syntactic information. In
EMNLP, pages 4231–4245, 2020.

[Pang and Lee, 2007] Bo Pang and Lillian Lee. Opinion min-
ing and sentiment analysis. Foundations and Trends in
Information Retrieval, 2(1-2):1–135, 2007.

[Peng et al., 2020] Haiyun Peng, Lu Xu, Lidong Bing, Fei
Huang, Wei Lu, and Luo Si. Knowing what, how and
why: A near complete solution for aspect-based sentiment
analysis. In AAAI, pages 8600–8607, 2020.

[Phan and Ogunbona, 2020] Minh Hieu Phan and Philip O.
Ogunbona. Modelling context and syntactical features for
aspect-based sentiment analysis. In ACL, pages 3211–3220,
2020.

[Tang et al., 2020] Hao Tang, Donghong Ji, Chenliang Li,
and Qiji Zhou. Dependency graph enhanced dual-
transformer structure for aspect-based sentiment classifica-
tion. In ACL, pages 6578–6588, 2020.

[Wang et al., 2017] Wenya Wang, Sinno Jialin Pan, Daniel
Dahlmeier, and Xiaokui Xiao. Coupled multi-layer atten-
tions for co-extraction of aspect and opinion terms. In
AAAI, pages 3316–3322, 2017.

[Wang et al., 2019] Xinyu Wang, Jingxian Huang, and Kewei
Tu. Second-order semantic dependency parsing with end-
to-end neural networks. In ACL, pages 4609–4618, 2019.

[Wang et al., 2020] Kai Wang, Weizhou Shen, Yunyi Yang,
Xiaojun Quan, and Rui Wang. Relational graph attention
network for aspect-based sentiment analysis. In ACL, pages
3229–3238, 2020.

[Wu et al., 2020a] Zhen Wu, Chengcan Ying, Fei Zhao, Zhi-
fang Fan, Xinyu Dai, and Rui Xia. Grid tagging scheme for
aspect-oriented fine-grained opinion extraction. In EMNLP,
pages 2576–2585, 2020.

[Wu et al., 2020b] Zhen Wu, Fei Zhao, Xin-Yu Dai, Shujian
Huang, and Jiajun Chen. Latent opinions transfer network
for target-oriented opinion words extraction. In AAAI, pages
9298–9305, 2020.

[Xu et al., 2018] Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu.
Double embeddings and cnn-based sequence labeling for
aspect extraction. In ACL, pages 592–598, 2018.

[Zhang et al., 2018] Yuhao Zhang, Peng Qi, and Christo-
pher D. Manning. Graph convolution over pruned depen-
dency trees improves relation extraction. In EMNLP, pages
2205–2215, 2018.

[Zhang et al., 2019] Chen Zhang, Qiuchi Li, and Dawei Song.
Aspect-based sentiment classification with aspect-specific
graph convolutional networks. In EMNLP, pages 4567–
4577, 2019.

[Zhao et al., 2020] He Zhao, Longtao Huang, Rong Zhang,
Quan Lu, and Hui Xue. Spanmlt: A span-based multi-task
learning framework for pair-wise aspect and opinion terms
extraction. In ACL, pages 3239–3248, 2020.


	1 Introduction
	2 Model
	2.1 Word Representation from BERT
	2.2 Syntax Fusion Encoder
	2.3 Term Generation and Filtering
	2.4 Term Pairing
	2.5 Training

	3 Experiments
	3.1 Experimental Setups
	3.2 Results and Analysis

	4 Related Work
	5 Conclusions

